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Abstract

An algorithm is presented for a robust real-time motion
recovery. The algorithm uses point to line matches andL1

error metric to reduce outliers and aperture effects.
The line-to-point match is implemented using weighted
hough transform over a normalized correlation matrix. The
motion parameters minimize theL1 norm and are computed
using linear programming.

1 Introduction

Real-time motion recovery is essential for time critical
applications such as robotics and vision based military ap-
plications. Real-time performance is also beneficial for less
critical tasks such as panoramic image where real-time en-
ables better user interface (the user can see the panoramic
image as it forms) and simpler application (there is no need
for mass storage device to save the captured movie for off-
line processing). The problem of robust motion recovery is
a a difficult problem due to noise and outliers. Real-time re-
quirement makes the problem even more difficult. This pa-
per presents a new approach towards real-time performance
where robustness is the key to performance by allowing fast
single iteration algorithm.

1.1 Previous Work

Many methods have been developed for motion recovery
from an images sequence, among them:

Probabilistic algorithm [8] - Algorithms that calculate the
motion parameters from randomly selected pairs of
matched points until they reach the desired accuracy.
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These algorithms may have several hundreds of itera-
tions to achieve low error probability (less then10�3

which corresponds to one-two errors a minute).

Direct computation from grey level [4, 5] - Algorithms
are based on the constant brightness assumption and
the optical flow constraint. These algorithms require
good motion segmentation and are usually combined
with motion segmentation methods in an iterative man-
ner. These algorithms are usually CPU intensive. The
application of direct computation from grey level to
complex motion models (projective, fundamental ma-
trix, tensor) is complicated.

Global alignment of local measures[3] - This algorithm
is a generalization of the direct grey level algorithms
in the sense that it is not restricted to grey level min-
imization. The algorithm definesmatch-measure sur-
faceover the local match field and uses Newton itera-
tions to maximize (or minimize) the sum of the local
measures.

Probabilistic matching [6, 7] - This method describe mo-
tion by normalized correlation matrices which enables
direct recovery of the translation vector with maximum
likelihood. Other parameters (rotation, scale) are re-
covered by extensive search over the parameter space.

Motion from Fuzzy Correspondences [2] - This method
expresses uncertainty by convex polygons. The motion
parameters are recovered by minimizing theL1 norm.
The method is limited to affine and pseudo-projective
models.

The algorithm presented in this paper combines and extends
the last two approaches, normalized correlation matrices are
approximated by lines and City-Block distance metric, and
the motion parameters minimizes theL1 metric. The algo-
rithm can express complex motion models as well.



2 Motion Computation

In order to gain real-time performance the algorithm re-
lies heavily on the robustness properties of point to line
matches andL1 metric. The number of selected points
that are used for motion recovery is extremely low (20-30
points) and no iteration are used. The algorithm is com-
posed of the following steps:

1. Point Selection.

2. Point to line matching.

3. Alignment usingL1 metric.

2.1 Point Selection

Good selection of points should be spread across the im-
age for good geometrical stability. Points should be located
on strong features such as edges, and they should have bal-
anced X-direction and Y-direction information. The point
selection algorithm is:

1. Evenly spreadN points across the image in a chess
board grid.

2. Allow “black” points to move slightly horizontally to
find strong vertical edges. Allow “white” points to
move slightlyvertically to find strong horizontal edges.

3. Select the bestK “black” points and the bestK
“white” points (2K < N ).

2.2 Point to Line matching

The correlation matrix of each points is transformed into
(�; distance) Hough spaces using weighted Hough trans-
form. For each matrix, the algorithm selects the line with
the maximum likelihood(the global maximum at the Hough
space). A second line is optionally selected which is the
second local maximum.

These two lines approximate the correlation matrix. The
approximation is given by the sum of Euclidian distances of
each matrix cell from these two lines. This approximation
can express several common types of matches:

point-to-point match point (x; y) ! (u; v) is expressed
by the point(x; y) and the lines(x = u; y = v).

point-to-line match is trivially expressed by the point and
the detected line.

point-to-ellipse match is expressed by aligning the lines
with the prime axes of the ellipse and assigning
weights according to the eccentricity of the ellipse.
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Figure 1. a) Point selection. b) Original correlation ma-
trix for the point that is marked with a white arrow. c)
Hough space of the correlation matrix. Arrows point to
the peak locations. Peak values (591, 1342) are used as
weights. d) Lines that correspond to the peak location.
These lines are used to approximate the correlation matrix.
e) Weighted City-Block distance approximation of the cor-
relation matrix.

The selection of linesand weightsis given by weighted
Hough transform - no addition processing is required.

Figure 1 demonstrate the approximation of the corre-
lation matrix by two lines.

2.3 Alignment using L1 metric

For this section we use a 2D, eight parameter projective
motion model.
A point p = (x; y; 1)t located at image-1 is mapped by the
2D projective transformationH into the (unknown) point

p0 =
�
(H1 �p)
(H3 �p)

;
(H2�p)
(H3�p)

; 1
�t

. The Euclidean distance of the

pointp0 from a linel = (Ax+By+C) located at image-2,
is given by:



dist(p0; l) =
1p

A2 + B2

�
A(H1 � p)
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B(H2 � p)
(H3 � p) +C

�

(1)
Multiplying (1) by (H3 � p) which is non-zero for finite size
image and setting the distance to zero results with the fol-
lowing linear constraint:

1p
A2 + B2

(A(H1 � p) +B(H2 � p) + C(H3 � p)) = 0

(2)
In order to recover the eight parameters 2D projective
transformation at least eight such point-to-line matches are
required.
RecoveringH from an over-constraint problem usingL1

is done by representing the equation set as the following
linear problem:

min : CtjZij
s:t:
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C is the weight vector (likelihood) of each line:

Notes:

1. This type of linear program can be used to solve any
non-homogeneous linear equation setAx = b.

2. If A is a(M;N ) matrix (M < N ) then the linear pro-
gram will have a total of2(M+N ) variables:2N vari-
ables are required for the variable vectorx, and2M
variables are requires for the slack variablesz. The
factor of two is needed since each unconstraint vari-
able is represented by two non-negative variables.

3. For this particular type of linear program, where the
constraints are of the formAx � b + z = 0, a basic
feasible solution is given by settingx = 0; z = b.
This enables the use of an efficient one-phase simplex
algorithm to solve the problem.

4. The slack variablesz contains the error measure for
each point and can be used for segmentation [2].

3 Experiments

3.1 Panoramic Image Creation

A panoramic image was created in real-time (10-12
frames / sec) using off-the-shelf PC. While the camera was

scanning the scene a pendulum was swinging across the
scene. The size of the pendulum was large enough to cre-
ate 10 to 15 percent of outliers during the panorama form-
ing. Since the stabilization algorithm used only frame to
frame motion recoveryany error will cause the panorama
to fail. Figure 2 shows the pendulum (and its shadow) ap-
pear/disappear several times due to the swinging motion.
Howeverall frames were correctly aligned (by similarity
model) as can be seen by the objects that were not occluded
by the pendulum.
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Figure 3. a) Selection points. b) Unregistered blending of
image1 and image2. c) Projective registration using point
to two lines formulation andL1 registration. Blending of
image1 and wrapped image2. d) Warping of image2using
the same input data pointsand a projective transformation
recovered by least-square metric.

3.2 Projective Registration

In this experiment we have compared theL1 registra-
tion to least-square point-to-point registration. The input
points were selected from a bi-directional optical-flow field.
Only points that were located on strong edges and agree
on both directions were selected. TheL1 algorithm con-
verted each point-to-point match as point into two point-to-
line matches. TheL1 alignment has aligned most of the
image (The box in the from of the image was considered an
outlier and was not aligned). The least square alignment has
failed.



a) b)

Figure 2. a) Point selection. The pendulum occupies four point of thirty. b) Panoramic image that was created while a pendulum
was swinging. The similarity alignment was not affected by the outliers.

4 Concluding Remarks

This paper presents a new approach for real-time motion
analysis based on: weighted Hough transform, point-to-line
match andL1 metric computed by linear programming. The
robustness of the tools used allow the algorithm to be single
resolution, single iteration which gives it real-time perfor-
mance.
A linear programmingL1 equation has been introduced.
This solver can be used in other computer vision problems
that are sensitive to outliers (the equation system must be
non-homogeneous).
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